
www.manaraa.com

Efficient Relational Storage and Retrieval of
XML Documents

Albrecht Schmidt Martin Kersten Menzo Windhouwer Florian Waas
CWI

Kruislaan 413
P.O. Box 94079

1090 GB Amsterdam
The Netherlands�rstname.lastname�
wi.nl

ABSTRACTIn this paper, we present a data and an exe
ution modelthat allow for eÆ
ient storage and retrieval of XML do
u-ments in a relational database. The data model is stri
tlybased on the notion of binary asso
iations: by de
ompos-ing XML do
uments into small,
exible and semanti
allyhomogeneous units we are able to exploit the performan
epotential of verti
al fragmentation. Moreover, our approa
hprovides
lear and intuitive semanti
s, whi
h fa
ilitates thede�nition of a de
larative query algebra. Our experimen-tal results with large
olle
tions of XML do
uments demon-strate the e�e
tiveness of the te
hniques proposed.
1. INTRODUCTIONXML in
reasingly assumes the role of the de fa
to stan-dard data ex
hange format in Web database environments.Modeling issues that arise from the dis
repan
y betweensemi-stru
tured data on the one hand side and fully stru
-tured database s
hemas on the other have re
eived spe
ialattention. Database resear
hers provided valuable insightsto bring these two areas together. The solutions proposedin
lude not only XML domain spe
i�
 developments butalso te
hniques that build on obje
t-oriented and relationaldatabase te
hnology (e.g., see [7, 1, 11, 15, 8, 16, 10, 2, 12℄).To make XML the language of Web databases, performan
eissues are the up
oming
hallenge that has to be met. Data-base support for XML pro
essing
an only �nd the wide-spread use that resear
hers anti
ipate if storage and retrievalof do
uments satisfy the demands of impatient surfers.In this paper, we are
on
erned with providing e�e
tive toolsfor the management of XML do
uments. This in
ludes tightintera
tion between established standards on the de
larative
on
eptual level like the DOM [18℄ and eÆ
ient physi
alquery exe
ution. Starting from the syntax tree representa-tion of a do
ument, we propose a data model that is based ona
omplete binary fragmentation of the do
ument tree. Thisway, all relevant asso
iations within a do
ument like parent-
hild relationships, attributes, or topologi
al orders
an beintuitively des
ribed, stored and queried. In
ontrast to gen-eral graph databases like Lore [1℄, we draw bene�t from thebasi
 tree stru
ture of the do
ument and in
orporate infor-mation about the asso
iation's position within the syntax

tree relative to the root into our data model. Referen
essu
h as IDREFs that es
ape the tree stru
ture are taken
areof by views on the tree stru
ture. Asso
iations that providesemanti
ally related information are stored together in thebinary relations of the database repository. Along with thede
omposition s
hema we also present a method to translatequeries formulated on paths of the syntax tree into expres-sions of an algebra for verti
ally fragmented s
hemas [4℄.Our approa
h is distinguished by two features. Firstly, thede
omposition method is independent of the presen
e ofDTDs, but rather explores the stru
ture of the do
umentat parse time. Information on the s
hema is automati
allyavailable after the de
omposition. Se
ondly, it redu
es thevolume of data irrelevant to a query that has to be pro-
essed during querying. Storing asso
iations a

ording totheir
ontext in the syntax tree provides tables that
ontainsemanti
ally
losely related information. As a result, datarelevant for a given query
an be a

essed dire
tly in formof a separate table avoiding large and expensive s
ans overirrelevant data.Reservations exist that a high degree of fragmentation mightin
ur in
reased e�orts to re
onstru
t the original do
ument,or parts of it. However, as our quantitative assessmentshows, the number of additional joins is fully made up for asthey involve only little data volume. Our approa
h displaysdistin
tly superior performan
e
ompared to previous work.
2. DATA MODEL AND ALGEBRAXML do
uments are
ommonly represented as syntax trees.With string and int denoting sets of
hara
ter strings andintegers and oid being the set of unique obje
t identi�ers,we
an de�ne a XML do
ument formally (e.g., see [19℄):Definition 1. An XML do
ument is a rooted tree d =(V;E; r; labelE ; labelA; rank) with nodes V and edges E �V � V and a distinguished node r 2 V , the root node. Thefun
tion labelE : V ! string assigns labels to nodes, i.e.,elements; labelA : V ! string ! string assigns pairs ofstrings, attributes and their values, to nodes. Chara
terData (CDATA) are modeled as a spe
ial `string' attribute of
data nodes, rank : V ! int establishes a ranking to allowfor an order among nodes with the same parent node. For

www.manaraa.com

<bibliography><arti
le key="BB88"><author>Ben Bit</author><title>How To Ha
k</title></arti
le><arti
le key="BK99"><editor>Ed Itor</editor><author>Bob Byte</author><author>Ken Key</author><title>Ha
king & RSI</title></arti
le></bibliography> o4 o6 o11

o10 o12

o13

o14

o15

o5o3 o8

o9

o2 o7

o1

article,article,"BB88"
key

"BK99"
key

bibliography,

cdata,

"How to Hack"

string string

editor,

cdata, cdata,

author,

cdata,

author,

"Bob Byte" "Ken Key"

string string string

cdata,

"Ben Bit" "Hacking & RSI"

title,

cdata,

string

title,author,

"Ed Itor"Figure 1: XML do
ument and
orresponding syntax treeelements without any attributes labelA maps to the emptyset.Figure 1 shows an XML do
ument, whi
h des
ribes a frag-ment of a bibliography, alongside its asso
iated syntax tree.The representation is largely self-explanatory, oi denote ob-je
t identi�ers (OIDs) whose assignment is arbitrary, e.g., depth-�rst traversal order. We apply the
ommon simpli�
ationnot to di�erentiate between PCDATA and CDATA nor dowe take ri
h datatypes into a

ount.
2.1 PreliminariesBefore we dis
uss te
hniques how to store a syntax graph asa database instan
e, we introdu
e the
on
epts of asso
ia-tions and path summaries. They identify spots of interestand
onstitute the basis for the Monet XML Model.1Definition 2. A pair (o; �) 2 oid� (oid [int [string)is
alled an asso
iation.The di�erent types of asso
iations des
ribe di�erent partsof the tree: asso
iations of type oid � oid represent edges,i.e., parent-
hild relationships. Attribute values (in
luding
hara
ter data, represented by verti
es with label `string',that start from `
data' labelled nodes) are modeled by as-so
iations of type oid � string, while asso
iations of typeoid� int are used to preserve the topology of a do
ument.Definition 3. For a node o in the syntax tree, we denotethe sequen
e of labels along the path (vertex and edge labels)from the root to o with path(o).As an example,
onsider the node with OID o3 in Figure 1;its path is bibliography e! arti
le e! author. The
orrespond-ing
hara
ter data string \Ben Bit" has path bibliography e!arti
le e! author e!
data a! string, where e! denotes edgesto elements and a! to attributes.Paths des
ribe the position of the element in the graph rel-ative to the root node and we use path(o) to denote the typeof the asso
iation (�; o). The set of all paths in a do
umentis
alled the do
ument's path summary.1We
hose the name Monet XML Model be
ause the home-grown database engine Monet [4℄ serves as implementationplatform.

2.2 The Monet XML ModelAs we pointed out at the beginning, the question
entral toquerying XML do
uments is how to store the syntax treeas a database instan
e that provides eÆ
ient retrieval
apa-bilities. Given De�nition 1 the tree
ould be stored usinga single database table for the parent-
hild relations (simi-lar to [17℄), another one for the elements labels and so on.Though spa
e e�e
tive, su
h a de
omposition makes query-ing expensive by enfor
ing s
ans over large amounts of datairrelevant to a query, sin
e stru
turally unrelated data arestored in the same tables. Even if the query
onsist of afew joins only, large data volumes may have to be pro
essed(see [10℄ for a dis
ussion of storage s
hemes of this kind).We pursue a rather di�erent approa
h using the stru
turesde�ned above, i.e., storing all asso
iations of the same typein the same binary relation. A relation that
ontains the tu-ple (�; o) is named path(o), and,
onversely, a tuple is storedin exa
tly one relation.Definition 4. Given an XML do
ument d, the Monettransform is a quadruple Mt(d) = (r;R;A;T) whereR is the set of binary relations that
ontain all asso
ia-tions between nodes;A is the set of binary relations that
ontain all asso
ia-tions between nodes and their attribute values, in
lud-ing
hara
ter data;T is the set of binary relations that
ontain all pairs ofnodes and their rank;r remains the root of the do
ument.En
oding the path to a
omponent into the name of therelation often a
hieves a signi�
antly higher degree of frag-mentation than implied by plain data guides [11℄. In otherwords, we use path to group semanti
ally related asso
ia-tions into the same relation. As a dire
t
onsequen
e of thede
omposition s
hema, we do not need to introdu
e novelfeatures on the storage level to
ope with irregularities in-du
ed by the semi-stru
tured nature of XML, whi
h are typ-i
ally taken
are of by NULLs or over
ow tables [8℄. More-over, it should be noted, that the
omplete de
ompositionis linear in the size of the do
ument with respe
t to running

www.manaraa.com

bibliography e! arti
le = fho1; o2i; ho1; o7ig;bibliography e! arti
le e! author = fho2; o3i; ho7; o10i; ho7; o12ig;bibliography e! arti
le e! author e!
data = fho3; o4i; ho10; o11i; ho12; o13ig;bibliography e! arti
le e! author e!
data a! string = fho4; \Ben Bit"i; ho11; \Bob Byte"i; ho13; \Ken Key"ig;bibliography e! arti
le e! title = fho2; o5i; ho7; o14ig;bibliography e! arti
le e! title e!
data = fho5; o6i; ho14; o15ig;bibliography e! arti
le e! title e!
data a! string = fho6; \How to Ha
k"i; ho15; \Ha
king & RSI"ig;bibliography e! arti
le e! editor = fho7; o8ig;bibliography e! arti
le e! editor e!
data = fho8; o9ig;bibliography e! arti
le e! editor e!
data a! string = fho9; \Ed Itor"ig;bibliography e! arti
le a! key = fho2; \BB88"i; ho7; \BK99"iggFigure 2: Monet transform Mt of the example do
umenttime. Con
erning memory requirements, it is in O(h), h be-ing the height of the syntax tree, in addition to the spa
ethe binary relations in the database engine o

upy, i.e., it isnot ne
essary to materialize the
omplete syntax tree.Proposition 1. The above mapping is lossless, i.e., foran XML do
ument d there exists an inverse mapping M�1tsu
h that d and M�1t (Mt(d)) are isomorphi
.A sket
h of the proof of Proposition 1 is given in the ap-pendix. Figure 2 shows the Monet transform of the exampledo
ument.The Monet transform also enables an obje
t-oriented per-spe
tive, i.e., obje
t being interpreted as node in the syntaxtree, whi
h is often more intuitive to the user and is adoptedby standards like the DOM [18℄. Parti
ularly in querying,approa
hes that bear strong similarities with obje
t-orientedte
hniques have emerged. Given the Monet transform, wehave the ne
essary tools at hand to re
on
ile the relationalperspe
tive with the obje
t-oriented view.It is natural to re-assemble an obje
t with OID o from thoseasso
iations whose �rst
omponent is o: e.g., the obje
tobje
t(o2) = fkeyho2; \BB88"i; author ho2; o3i; titleho2; o5igis easily
onverted into an instan
e of a suitably de�ned
lass arti
le with members key , author and title. However,XML is regarded as an in
arnation of the semi-stru
turedparadigm. One
onsequen
e of this is that we
annot ex-pe
t all instan
es of one type to share the same stru
ture.In the example, the se
ond publi
ation does have an editorelement whereas the �rst does not. We therefore distinguishbetween two kinds of asso
iations: (strong) asso
iations andweak asso
iations. Strong asso
iations
onstitute the stru
-tured part of XML { they are present in every instan
e ofa type; weak asso
iations a

ount for the semi-stru
turedpart: they may or may not appear in a given instan
e. Ob-je
ts o2 and o7 re
e
t this: o7 has a editor member whereaso2 has not. Therefore, we de�ne the following:

Definition 5. An obje
t o is a set of strong and weakasso
iations fA1ho; o1i; A2ho; o2i; : : : g.The next question we address dire
tly arises from the mod-eling of obje
ts: How
an we re-formulate queries from anobje
t-oriented setting to queries in relational Monet XML?
2.3 Execution Model and AlgebraThe uni�ed view provided by the Monet XML model ex-tends dire
tly to querying. For the relational layer, a mul-titude of operators implementing the relational algebra, in-
luding spe
ialties intrinsi
 to verti
al fragmented s
hemas,have been proposed. Hen
e, we omit a dis
ussion of te
h-ni
al issues
on
erning bare, relational query pro
essing inthe
ontext of verti
al fragmentation and refer the interestedreader to [4℄ for a
omprehensive overview.More interesting is the a
tual translation of an OQL-likequery to mat
h the fa
ilities of the underlying query exe
u-tion engine. We only outline the translation by an examplequery. The pro
ess bears strong resemblan
e to mappingte
hniques developed to implement obje
t-oriented query in-terfa
es on relational databases; thus, we
an resort to thewealth of te
hniques developed in that �eld. See [5℄ for a
omparative analysis of di�erent query languages for XML.Consider the following query whi
h sele
ts those of Ben Bit'spubli
ations whose titles
ontain the word `Ha
k'; the se-manti
s of the statements are similar to [3℄:sele
t pfrom bibliography e! arti
le p,p e! author e!
data a,p e! title e!
data twhere a = \Ben Bit" and t like \Ha
k";The query
onsists of two blo
ks, a spe
i�
ation of the el-ements involved, whi
h translates to
omputing the properbinary relations, and
onstraints that de�ne the a
tual pro-
essing. For resolving path expressions, we need to distin-

www.manaraa.com

guish two types of variables in the from
lause: variablesthat spe
ify sets, p in the example, and variables, whi
hspe
ify asso
iations, a and t.We
ollapse ea
h path expression that is not available inthe database by joining the binary relations along the pathspe
i�
ation. This establishes an asso
iation between the�rst and last element of the path. Finally, we take the in-terse
tion of the spe
i�ed elements. Mat
hing the variablesagainst the running example, the from
lause spe
i�es thefollowing elements:p = fo2; o7g;asso
(p! a) = f(o2; \Ben Bit"); (o7; \Bob Byte");(o7; \Ken Key")g;asso
(p! t) = f(o2; \How To Ha
k");(o7; \Ha
king & RSI")gQueries
ontaining regular expressions over paths dire
tlybene�t from the availability of the path summary. Standardmethods for the evaluation of regular expressions
an beapplied to the textual representation of the paths and enablethe immediate sele
tion of the
andidate relations.The evaluation of the where
lause is not of parti
ular in-terest in this
ontext. Though pro
essing of binary tablesdi�ers from the
onventional relational model in several as-pe
ts, these di�eren
es have no dire
t impa
t on our method.
3. QUANTITATIVE ASSESSMENTWe assess the te
hniques proposed with respe
t to size ofthe resulting database, as well as querying and browsing thedatabase. As appli
ation domains we
hose readily avail-able XML do
ument
olle
tion: the ACM SIGMOD An-thology [13℄, Webster's Di
tionary [9℄, and Shakespeare'sPlays [6℄.We implemented Monet XML within the Monet databaseserver [4℄. The measurements were
arried out on an Sili
onGraphi
s 1400 Server with 1 GB main memory, running at550 MHz. For
omparisons with related work, we used aSun UltraSPARC-IIi with 360 MHz
lo
k speed and 256 MBmain memory.Database Size. The resulting sizes of the de
ompositions
heme are a
riti
al issue. Theoreti
ally, the size of the pathsummary
an be linear in the size of the do
ument as theworst
ase { if the do
ument is
ompletely un-stru
tured.However, in pra
ti
al appli
ations, we typi
ally �nd largestru
tured portions within ea
h do
ument. Table 1 showsthe database sizes for our examples in
omparison with thesize of the original XML
ode. The third
olumn
ontainsthe number of tables, i.e., the size of the path summary.The last
olumn shows the
omplete time needed to parse,de
ompose and store the do
uments.It leaps out that the Monet XML version of the ACM An-thology is of smaller size than the original do
ument. Thisredu
tion is due to the `automati
'
ompression inherent inthe Monet transform (tag names are stored only on
e asmetainformation) and the removal of redundantly o

urring
hara
ter data. For example there are only few di�erentpublishers
ompared to the number of entries in general. In

100

101

102

103

104

102 103 104 105 106

R
es

po
ns

e
tim

e
in

 m
s

Size of database in number of publications

4 assoc
3 assoc
2 assoc
1 assoc

Figure 3: S
aling of do
ument

50

60

70

80

90

100

0 20 40 60 80 100 120

R
et

rie
va

l a
nd

 r
ec

on
st

ru
ct

io
n

tim
e

in
 m

s

Number of retrieved publications per author

Total response time
Query processing

Figure 4: Response time vs. result sizethe de
omposition, full entries of these �elds
an be repla
edwith referen
es; this is done automati
ally by the DBMS. We
an expe
t similar e�e
ts to o

ur with other de
ompositions
hemas, like obje
t-oriented mappings.S
aling. In order to inspe
t the s
aling behavior of ourte
hnique we varied the size of the underlying do
ument.In doing so, we took
are to maintain the ratio of di�erentelements and attributes of the original do
ument. We s
aledthe ACM Anthology from 30 to 3 � 106 publi
ations whi
h
orresponds to XML sour
e size between 10KB and 1GB.Size of the database and time s
aled linear in the size of theXML do
ument.Querying. To test for query performan
e under s
alingwe ran 4 queries
onsisting of path expressions of length 1through 4 for various sizes of the Anthology. As Figure 3shows, the response times for ea
h query, given as a fun
-tion of the size of the do
ument, is linear in the size of thedatabase. Only for small sizes of the database, the responsetime is dominated by the overhead of the database system.Noti
e, both axes are logarithmi
.

www.manaraa.com

Do
uments size in XML size in Monet XML #Tables LoadingACM Anthology 46.6 MB 44.2 MB 187 30.4 sShakespeare's Plays 7.9 MB 8.2 MB 95 4.5 sWebster's Di
tionary 56.1 MB 95.6 MB 2587 56.6 sTable 1: Sizes of do
ument
olle
tions in XML and Monet XML formatQ1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q101A Monet XML 1.2 5.6 6.8 8.0 4.4 4.9 5.0 5.0 8.8 12.72A SYU / Postgres 150 180 160 180 190 340 350 370 1300 10401B Monet XML { 4.4 5.6 6.8 3.2 3.7 3.8 3.8 7.6 11.52B SYU / Postgres { 30 10 30 40 190 200 220 1150 890Table 2: Comparison of response times for query set of SYUOnly few of the performan
e analyses published so far of-fer the possibility to reprodu
e and
ompare results, whi
hmakes meaningful
omparison diÆ
ult at this time. The re-sults we use to
ompare Monet XML against were reportedin [16℄ who implemented their algorithms as a front-end toPostgres. In [16℄, the authors propose a set of 10 queriesusing Shakespeare's plays [6℄ as an appli
ation domain. Werefer to their approa
h as SYU in the following. In Table 2we
ontrasted response times of Monet XML with SYU ob-tained from experiments on the abovementioned Sun Work-station.The �gures display a substantial di�eren
e in response timeshowing that Monet XML outruns the
ompetitor by up totwo orders of magnitude (rows 1A,2A). The times for SYUin
lude a translation of XQL to SQL that is handled outsidethe database server. To allow for this di�eren
e, we addi-tionally
omputed the response times relative to query 1 forboth systems separately, assuming that prepro
essing
ostshave a
onstant
ontribution. These �gures exhibit a
tualquery pro
essing time only (rows 1B,2B). Monet XML showsan in
rease of pro
essing time by less than 12 ms whereasSYU is up to 1150 ms slower than its fastest response time.An analysis of the �gures exhibits the advantages of theMonet model. While SYU store basi
ally all data on asingle heap and have to s
an these data repeatedly, theMonet transform yields substantially smaller data volumes.In some extreme
ases, the query result is dire
tly avail-able in Monet XML without any pro
essing and only needsto be traversed and output. Another noti
eable di�eren
e
on
erns the
omplexity of queries: the straight-forward se-manti
s of the Monet XML model result in relatively simplequeries;
onversely, the
ompiled SQL statements that SYUpresent are quite
omplex.The
omparison with Lore [14℄ exhibited essentially the sametrends on small do
ument instan
es. However, we were notable to bulkload and query larger do
uments like the ACManthology as Lore requested more than the available 1 GBmain memory. In
ontrast, using Monet XML we engi-neered a system fun
tionally equivalent to the online DBLPserver [13℄ that operated in less than 130 MB.Browsing a database. Our last experiments aim at as-sessing the systems
apabilities with respe
t to browsing.As an example
onsider a typi
al query as it is run on theAnthology server several thousand times a day: Retrieve all

onferen
e publi
ations for a given author. Clearly, the sizeof the output may vary drasti
ally and it is of parti
ularinterest for a browsing session that response times are keptlow independent of the size of the answer.Figure 4 shows both the total response time in
luding tex-tual rendering and response time of the repository. As ex-pe
ted, the time for rendering the output in
reases signi�-
antly yet linear in the result size. However, the responsetime of the repository in
reases at signi�
antly lower rate.This is due to the re
onstru
tion of the asso
iations in formof joins rather than
hasing individual
hains of pointers.Even for authors with a large number of publi
ations theoverall response time is well under one tenth of a se
ond,whi
h makes intera
tive browsing a�ordable. Also note thatthe lower line in Figure 4
ould also be interpreted as the
ost of
onstru
ting a view while the upper line additionallyin
ludes rendering the view to textual XML.The results presented demonstrate the performan
e poten-tial of our approa
h deploying fully verti
al fragmentation.As the low response times show, redu
ing the data volumeinvolved in single database operations on the expense of ad-ditional joins pays very well not only in terms of overallperforman
e but also when s
aling is an issue.
4. CONCLUSIONSWe presented a data model for eÆ
ient pro
essing of XMLdo
uments. Our experien
es show that it is worth takingthe plunge and fully de
ompose XML do
uments into bi-nary asso
iations. The experimental results obtained witha prototype implementation based on Monet underline theviability of our approa
h: the e�ort to redu
e data volumequi
kly pays o� as gains in eÆ
ien
y. Overall, our approa
h
ombines the elegan
e of
lear semanti
s with a highly ef-�
ient exe
ution model by means of a simple and e�e
tivemapping between XML do
uments and a relational s
hema.Con
erning future work, we will
on
entrate on exploringpossibilities of parallel pro
essing and eÆ
ient handling ofmulti-query workloads as found in typi
al intera
tive Web-based information systems. As we have seen with own ex-periments, there is also the need for a general, standardizedmethodology that allows
on
lusive performan
e analysesand fa
ilitates
omparisons of di�erent approa
hes.

www.manaraa.com

5. REFERENCES[1℄ S. Abiteboul, D. Quass, J. M
Hugh, J. Widom, andJ. L. Wiener. The Lorel Query Language forSemistru
tured Data. International Journal on DigitalLibraries, 1(1):68{88, 1997.[2℄ S. AG. Tamino { Te
hni
al Des
ription. available athttp://www.softwareag.
om/tamino/te
hni
al/des
ription.htm.[3℄ C. Beeri and Y. Tzaban. SAL: An Algebra forSemistru
tured Data and XML. In InternationalWorkshop on the Web and Databases, pages 37{42,Pennsylvania, USA, 1999.[4℄ P. A. Bon
z and M. L. Kersten. MIL Primitives forQuerying a Fragmented World. The VLDB Journal,8(2):101{119, 1999.[5℄ A. Bonifati and S. Ceri. Comparative Analysis of FiveXML Query Languages. ACM SIGMOD Re
ord,1(29), 2000.[6℄ J. Bosak. Sample XML do
uments.shakespeare.1.01.xml.zip available at ftp://sunsite.un
.edu/pub/sun-info/standards/xml/eg/.[7℄ P. Buneman, S. B. Davidson, G. G. Hillebrand, andD. Su
iu. A Query Language and OptimizationTe
hniques for Unstru
tured Data. In Pro
. of theACM SIGMOD Int'l. Conf. on Management of Data,pages 505{516, Montreal, Canada, 1996.[8℄ A. Deuts
h, M. F. Fernandez, and D. Su
iu. StoringSemistru
tured Data with STORED. In Pro
. of theACM SIGMOD Int'l. Conf. on Management of Data,pages 431{442, Philadephia, PA, USA, 1999.[9℄ M. Dy
k. The GNU version of The CollaborativeInternational Di
tionary of English, presented in theExtensible Markup Language. available athttp://metalab.un
.edu/webster/.[10℄ D. Flores
u and D. Kossmann. Storing and QueryingXML Data Using an RDBMS. Data EngineeringBulletin, 22(3), 1999.[11℄ R. Goldman and J. Widom. Dataguides: EnablingQuery Formulation and Optimization inSemistru
tured Databases. In Pro
. of the Int'l. Conf.on Very Large Data Bases, pages 436{445, Athens,Gree
e, 1997.[12℄ C. Kanne and G. Moerkotte. EÆ
ient Storage of XMLData. In Pro
eedings of the 16th InternationalConferen
e on Data Engineering, page 198, 2000.[13℄ M. Ley. DBLP Bibliography. http://www.informatik.uni-trier.de:8000/~ley/db/.[14℄ J. M
Hugh, S. Abiteboul, R. Goldman, D. Quass, andJ. Widom. Lore: A Database Management System forSemistru
tured Data. ACM SIGMOD Re
ord, 3(26),1997.

[15℄ J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,D. DeWitt, and J. Naughton. Relational Databases forQuerying XML Do
uments: Limitations andOpportunities. In Pro
. of the Int'l. Conf. on VeryLarge Data Bases, pages 302{314, Edinburgh, UK,1999.[16℄ T. Shimura, M. Yoshikawa, and S. Uemura. Storageand Retrieval of XML Do
uments UsingObje
t-Relational Databases. In Database and ExpertSystems Appli
ations, pages 206{217. Springer, 1999.[17℄ R. van Zwol, P. Apers, and A. Wils
hutz.Implementing semi-stru
tured data with MOA. InWorkshop on Query Pro
essing for Semistru
tureddata and Non-Standard Data Formats (in
onjun
tionwith ICDT), 1999.[18℄ W3C. Do
ument Obje
t Model (DOM). available athttp://www.w3.org/DOM/.[19℄ W3C. Extensible Markup Language (XML) 1.0.available athttp://www.w3.org/TR/1998/REC-xml-19980210.
APPENDIXProof of Proposition 1. De�nition 4 introdu
es theMonet transformMt(d) = (r;R;A;T) of a do
ument d. Fora do
ument d the sets R;A and T are
omputed as follows:for elements:R = [(oi;oj ;s)2 ~E[path(oi) e! s℄hoi; oji;for attributes in
luding CDATA:A = [(oi;s1;s2)2labelA[path(oi) a! s1℄hoi; s2i;for ranking integers:T = [(oi;i)2rank[path(oi) ! rank ℄hoi; ii�;where E and labelE are
ombined into one set~E = f(o1; o2; s)j(o1; o2) 2 E; s = labelE(o2)g;labelA is interpreted as a set � oid � string � string aswell as rank � oid� int, and [expr ℄ means that the value ofexpr is a relation name. To see that the mapping given inde�nition 4 is lossless we give the inverse mapping. Given aninstan
e of the Monet XML modelMt(d) we
an re
onstru
tthe original rooted tree d = (V;E; r; labelE ; labelA; rank)in the following way (se
ond-last(p) returns the se
ond-last
omponent of path p).1. V = �oij(9R 2 R)(9oj 2 oid) : Rhoi; oji	,2. E = �(oi; oj)j(9R 2 R) : Rhoi; oji	,3. r remains,4. labelE = �(oi; s)j(9R 2 R)(9oj 2 oid)(9s 2 string) :Rhoi; oji ^ se
ond-last(R) = s	,5. labelA = �(oi; s1; s2)j(9A 2 A) : Ahoi; s2i ^ last(A) =s1	,6. rank = �(o; i)j(9T 2 T) : T ho; ii	.

