
www.manaraa.com

Efficient Relational Storage and Retrieval of
XML Documents

Albrecht Schmidt Martin Kersten Menzo Windhouwer Florian Waas
CWI

Kruislaan 413
P.O. Box 94079

1090 GB Amsterdam
The Netherlands�rstname.lastname�wi.nl

ABSTRACTIn this paper, we present a data and an exeution modelthat allow for eÆient storage and retrieval of XML dou-ments in a relational database. The data model is stritlybased on the notion of binary assoiations: by deompos-ing XML douments into small, exible and semantiallyhomogeneous units we are able to exploit the performanepotential of vertial fragmentation. Moreover, our approahprovides lear and intuitive semantis, whih failitates thede�nition of a delarative query algebra. Our experimen-tal results with large olletions of XML douments demon-strate the e�etiveness of the tehniques proposed.
1. INTRODUCTIONXML inreasingly assumes the role of the de fato stan-dard data exhange format in Web database environments.Modeling issues that arise from the disrepany betweensemi-strutured data on the one hand side and fully stru-tured database shemas on the other have reeived speialattention. Database researhers provided valuable insightsto bring these two areas together. The solutions proposedinlude not only XML domain spei� developments butalso tehniques that build on objet-oriented and relationaldatabase tehnology (e.g., see [7, 1, 11, 15, 8, 16, 10, 2, 12℄).To make XML the language of Web databases, performaneissues are the upoming hallenge that has to be met. Data-base support for XML proessing an only �nd the wide-spread use that researhers antiipate if storage and retrievalof douments satisfy the demands of impatient surfers.In this paper, we are onerned with providing e�etive toolsfor the management of XML douments. This inludes tightinteration between established standards on the delarativeoneptual level like the DOM [18℄ and eÆient physialquery exeution. Starting from the syntax tree representa-tion of a doument, we propose a data model that is based ona omplete binary fragmentation of the doument tree. Thisway, all relevant assoiations within a doument like parent-hild relationships, attributes, or topologial orders an beintuitively desribed, stored and queried. In ontrast to gen-eral graph databases like Lore [1℄, we draw bene�t from thebasi tree struture of the doument and inorporate infor-mation about the assoiation's position within the syntax

tree relative to the root into our data model. Referenessuh as IDREFs that esape the tree struture are taken areof by views on the tree struture. Assoiations that providesemantially related information are stored together in thebinary relations of the database repository. Along with thedeomposition shema we also present a method to translatequeries formulated on paths of the syntax tree into expres-sions of an algebra for vertially fragmented shemas [4℄.Our approah is distinguished by two features. Firstly, thedeomposition method is independent of the presene ofDTDs, but rather explores the struture of the doumentat parse time. Information on the shema is automatiallyavailable after the deomposition. Seondly, it redues thevolume of data irrelevant to a query that has to be pro-essed during querying. Storing assoiations aording totheir ontext in the syntax tree provides tables that ontainsemantially losely related information. As a result, datarelevant for a given query an be aessed diretly in formof a separate table avoiding large and expensive sans overirrelevant data.Reservations exist that a high degree of fragmentation mightinur inreased e�orts to reonstrut the original doument,or parts of it. However, as our quantitative assessmentshows, the number of additional joins is fully made up for asthey involve only little data volume. Our approah displaysdistintly superior performane ompared to previous work.
2. DATA MODEL AND ALGEBRAXML douments are ommonly represented as syntax trees.With string and int denoting sets of harater strings andintegers and oid being the set of unique objet identi�ers,we an de�ne a XML doument formally (e.g., see [19℄):Definition 1. An XML doument is a rooted tree d =(V;E; r; labelE ; labelA; rank) with nodes V and edges E �V � V and a distinguished node r 2 V , the root node. Thefuntion labelE : V ! string assigns labels to nodes, i.e.,elements; labelA : V ! string ! string assigns pairs ofstrings, attributes and their values, to nodes. CharaterData (CDATA) are modeled as a speial `string' attribute ofdata nodes, rank : V ! int establishes a ranking to allowfor an order among nodes with the same parent node. For

www.manaraa.com

<bibliography><artile key="BB88"><author>Ben Bit</author><title>How To Hak</title></artile><artile key="BK99"><editor>Ed Itor</editor><author>Bob Byte</author><author>Ken Key</author><title>Haking & RSI</title></artile></bibliography> o4 o6 o11

o10 o12

o13

o14

o15

o5o3 o8

o9

o2 o7

o1

article,article,"BB88"
key

"BK99"
key

bibliography,

cdata,

"How to Hack"

string string

editor,

cdata, cdata,

author,

cdata,

author,

"Bob Byte" "Ken Key"

string string string

cdata,

"Ben Bit" "Hacking & RSI"

title,

cdata,

string

title,author,

"Ed Itor"Figure 1: XML doument and orresponding syntax treeelements without any attributes labelA maps to the emptyset.Figure 1 shows an XML doument, whih desribes a frag-ment of a bibliography, alongside its assoiated syntax tree.The representation is largely self-explanatory, oi denote ob-jet identi�ers (OIDs) whose assignment is arbitrary, e.g., depth-�rst traversal order. We apply the ommon simpli�ationnot to di�erentiate between PCDATA and CDATA nor dowe take rih datatypes into aount.
2.1 PreliminariesBefore we disuss tehniques how to store a syntax graph asa database instane, we introdue the onepts of assoia-tions and path summaries. They identify spots of interestand onstitute the basis for the Monet XML Model.1Definition 2. A pair (o; �) 2 oid� (oid [int [string)is alled an assoiation.The di�erent types of assoiations desribe di�erent partsof the tree: assoiations of type oid � oid represent edges,i.e., parent-hild relationships. Attribute values (inludingharater data, represented by verties with label `string',that start from `data' labelled nodes) are modeled by as-soiations of type oid � string, while assoiations of typeoid� int are used to preserve the topology of a doument.Definition 3. For a node o in the syntax tree, we denotethe sequene of labels along the path (vertex and edge labels)from the root to o with path(o).As an example, onsider the node with OID o3 in Figure 1;its path is bibliography e! artile e! author. The orrespond-ing harater data string \Ben Bit" has path bibliography e!artile e! author e! data a! string, where e! denotes edgesto elements and a! to attributes.Paths desribe the position of the element in the graph rel-ative to the root node and we use path(o) to denote the typeof the assoiation (�; o). The set of all paths in a doumentis alled the doument's path summary.1We hose the name Monet XML Model beause the home-grown database engine Monet [4℄ serves as implementationplatform.

2.2 The Monet XML ModelAs we pointed out at the beginning, the question entral toquerying XML douments is how to store the syntax treeas a database instane that provides eÆient retrieval apa-bilities. Given De�nition 1 the tree ould be stored usinga single database table for the parent-hild relations (simi-lar to [17℄), another one for the elements labels and so on.Though spae e�etive, suh a deomposition makes query-ing expensive by enforing sans over large amounts of datairrelevant to a query, sine struturally unrelated data arestored in the same tables. Even if the query onsist of afew joins only, large data volumes may have to be proessed(see [10℄ for a disussion of storage shemes of this kind).We pursue a rather di�erent approah using the struturesde�ned above, i.e., storing all assoiations of the same typein the same binary relation. A relation that ontains the tu-ple (�; o) is named path(o), and, onversely, a tuple is storedin exatly one relation.Definition 4. Given an XML doument d, the Monettransform is a quadruple Mt(d) = (r;R;A;T) whereR is the set of binary relations that ontain all assoia-tions between nodes;A is the set of binary relations that ontain all assoia-tions between nodes and their attribute values, inlud-ing harater data;T is the set of binary relations that ontain all pairs ofnodes and their rank;r remains the root of the doument.Enoding the path to a omponent into the name of therelation often ahieves a signi�antly higher degree of frag-mentation than implied by plain data guides [11℄. In otherwords, we use path to group semantially related assoia-tions into the same relation. As a diret onsequene of thedeomposition shema, we do not need to introdue novelfeatures on the storage level to ope with irregularities in-dued by the semi-strutured nature of XML, whih are typ-ially taken are of by NULLs or overow tables [8℄. More-over, it should be noted, that the omplete deompositionis linear in the size of the doument with respet to running

www.manaraa.com

bibliography e! artile = fho1; o2i; ho1; o7ig;bibliography e! artile e! author = fho2; o3i; ho7; o10i; ho7; o12ig;bibliography e! artile e! author e! data = fho3; o4i; ho10; o11i; ho12; o13ig;bibliography e! artile e! author e! data a! string = fho4; \Ben Bit"i; ho11; \Bob Byte"i; ho13; \Ken Key"ig;bibliography e! artile e! title = fho2; o5i; ho7; o14ig;bibliography e! artile e! title e! data = fho5; o6i; ho14; o15ig;bibliography e! artile e! title e! data a! string = fho6; \How to Hak"i; ho15; \Haking & RSI"ig;bibliography e! artile e! editor = fho7; o8ig;bibliography e! artile e! editor e! data = fho8; o9ig;bibliography e! artile e! editor e! data a! string = fho9; \Ed Itor"ig;bibliography e! artile a! key = fho2; \BB88"i; ho7; \BK99"iggFigure 2: Monet transform Mt of the example doumenttime. Conerning memory requirements, it is in O(h), h be-ing the height of the syntax tree, in addition to the spaethe binary relations in the database engine oupy, i.e., it isnot neessary to materialize the omplete syntax tree.Proposition 1. The above mapping is lossless, i.e., foran XML doument d there exists an inverse mapping M�1tsuh that d and M�1t (Mt(d)) are isomorphi.A sketh of the proof of Proposition 1 is given in the ap-pendix. Figure 2 shows the Monet transform of the exampledoument.The Monet transform also enables an objet-oriented per-spetive, i.e., objet being interpreted as node in the syntaxtree, whih is often more intuitive to the user and is adoptedby standards like the DOM [18℄. Partiularly in querying,approahes that bear strong similarities with objet-orientedtehniques have emerged. Given the Monet transform, wehave the neessary tools at hand to reonile the relationalperspetive with the objet-oriented view.It is natural to re-assemble an objet with OID o from thoseassoiations whose �rst omponent is o: e.g., the objetobjet(o2) = fkeyho2; \BB88"i; author ho2; o3i; titleho2; o5igis easily onverted into an instane of a suitably de�nedlass artile with members key , author and title. However,XML is regarded as an inarnation of the semi-struturedparadigm. One onsequene of this is that we annot ex-pet all instanes of one type to share the same struture.In the example, the seond publiation does have an editorelement whereas the �rst does not. We therefore distinguishbetween two kinds of assoiations: (strong) assoiations andweak assoiations. Strong assoiations onstitute the stru-tured part of XML { they are present in every instane ofa type; weak assoiations aount for the semi-struturedpart: they may or may not appear in a given instane. Ob-jets o2 and o7 reet this: o7 has a editor member whereaso2 has not. Therefore, we de�ne the following:

Definition 5. An objet o is a set of strong and weakassoiations fA1ho; o1i; A2ho; o2i; : : : g.The next question we address diretly arises from the mod-eling of objets: How an we re-formulate queries from anobjet-oriented setting to queries in relational Monet XML?
2.3 Execution Model and AlgebraThe uni�ed view provided by the Monet XML model ex-tends diretly to querying. For the relational layer, a mul-titude of operators implementing the relational algebra, in-luding speialties intrinsi to vertial fragmented shemas,have been proposed. Hene, we omit a disussion of teh-nial issues onerning bare, relational query proessing inthe ontext of vertial fragmentation and refer the interestedreader to [4℄ for a omprehensive overview.More interesting is the atual translation of an OQL-likequery to math the failities of the underlying query exeu-tion engine. We only outline the translation by an examplequery. The proess bears strong resemblane to mappingtehniques developed to implement objet-oriented query in-terfaes on relational databases; thus, we an resort to thewealth of tehniques developed in that �eld. See [5℄ for aomparative analysis of di�erent query languages for XML.Consider the following query whih selets those of Ben Bit'spubliations whose titles ontain the word `Hak'; the se-mantis of the statements are similar to [3℄:selet pfrom bibliography e! artile p,p e! author e! data a,p e! title e! data twhere a = \Ben Bit" and t like \Hak";The query onsists of two bloks, a spei�ation of the el-ements involved, whih translates to omputing the properbinary relations, and onstraints that de�ne the atual pro-essing. For resolving path expressions, we need to distin-

www.manaraa.com

guish two types of variables in the from lause: variablesthat speify sets, p in the example, and variables, whihspeify assoiations, a and t.We ollapse eah path expression that is not available inthe database by joining the binary relations along the pathspei�ation. This establishes an assoiation between the�rst and last element of the path. Finally, we take the in-tersetion of the spei�ed elements. Mathing the variablesagainst the running example, the from lause spei�es thefollowing elements:p = fo2; o7g;asso(p! a) = f(o2; \Ben Bit"); (o7; \Bob Byte");(o7; \Ken Key")g;asso(p! t) = f(o2; \How To Hak");(o7; \Haking & RSI")gQueries ontaining regular expressions over paths diretlybene�t from the availability of the path summary. Standardmethods for the evaluation of regular expressions an beapplied to the textual representation of the paths and enablethe immediate seletion of the andidate relations.The evaluation of the where lause is not of partiular in-terest in this ontext. Though proessing of binary tablesdi�ers from the onventional relational model in several as-pets, these di�erenes have no diret impat on our method.
3. QUANTITATIVE ASSESSMENTWe assess the tehniques proposed with respet to size ofthe resulting database, as well as querying and browsing thedatabase. As appliation domains we hose readily avail-able XML doument olletion: the ACM SIGMOD An-thology [13℄, Webster's Ditionary [9℄, and Shakespeare'sPlays [6℄.We implemented Monet XML within the Monet databaseserver [4℄. The measurements were arried out on an SilionGraphis 1400 Server with 1 GB main memory, running at550 MHz. For omparisons with related work, we used aSun UltraSPARC-IIi with 360 MHz lok speed and 256 MBmain memory.Database Size. The resulting sizes of the deompositionsheme are a ritial issue. Theoretially, the size of the pathsummary an be linear in the size of the doument as theworst ase { if the doument is ompletely un-strutured.However, in pratial appliations, we typially �nd largestrutured portions within eah doument. Table 1 showsthe database sizes for our examples in omparison with thesize of the original XML ode. The third olumn ontainsthe number of tables, i.e., the size of the path summary.The last olumn shows the omplete time needed to parse,deompose and store the douments.It leaps out that the Monet XML version of the ACM An-thology is of smaller size than the original doument. Thisredution is due to the `automati' ompression inherent inthe Monet transform (tag names are stored only one asmetainformation) and the removal of redundantly ourringharater data. For example there are only few di�erentpublishers ompared to the number of entries in general. In

100

101

102

103

104

102 103 104 105 106

R
es

po
ns

e
tim

e
in

 m
s

Size of database in number of publications

4 assoc
3 assoc
2 assoc
1 assoc

Figure 3: Saling of doument

50

60

70

80

90

100

0 20 40 60 80 100 120

R
et

rie
va

l a
nd

 r
ec

on
st

ru
ct

io
n

tim
e

in
 m

s

Number of retrieved publications per author

Total response time
Query processing

Figure 4: Response time vs. result sizethe deomposition, full entries of these �elds an be replaedwith referenes; this is done automatially by the DBMS. Wean expet similar e�ets to our with other deompositionshemas, like objet-oriented mappings.Saling. In order to inspet the saling behavior of ourtehnique we varied the size of the underlying doument.In doing so, we took are to maintain the ratio of di�erentelements and attributes of the original doument. We saledthe ACM Anthology from 30 to 3 � 106 publiations whihorresponds to XML soure size between 10KB and 1GB.Size of the database and time saled linear in the size of theXML doument.Querying. To test for query performane under salingwe ran 4 queries onsisting of path expressions of length 1through 4 for various sizes of the Anthology. As Figure 3shows, the response times for eah query, given as a fun-tion of the size of the doument, is linear in the size of thedatabase. Only for small sizes of the database, the responsetime is dominated by the overhead of the database system.Notie, both axes are logarithmi.

www.manaraa.com

Douments size in XML size in Monet XML #Tables LoadingACM Anthology 46.6 MB 44.2 MB 187 30.4 sShakespeare's Plays 7.9 MB 8.2 MB 95 4.5 sWebster's Ditionary 56.1 MB 95.6 MB 2587 56.6 sTable 1: Sizes of doument olletions in XML and Monet XML formatQ1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q101A Monet XML 1.2 5.6 6.8 8.0 4.4 4.9 5.0 5.0 8.8 12.72A SYU / Postgres 150 180 160 180 190 340 350 370 1300 10401B Monet XML { 4.4 5.6 6.8 3.2 3.7 3.8 3.8 7.6 11.52B SYU / Postgres { 30 10 30 40 190 200 220 1150 890Table 2: Comparison of response times for query set of SYUOnly few of the performane analyses published so far of-fer the possibility to reprodue and ompare results, whihmakes meaningful omparison diÆult at this time. The re-sults we use to ompare Monet XML against were reportedin [16℄ who implemented their algorithms as a front-end toPostgres. In [16℄, the authors propose a set of 10 queriesusing Shakespeare's plays [6℄ as an appliation domain. Werefer to their approah as SYU in the following. In Table 2we ontrasted response times of Monet XML with SYU ob-tained from experiments on the abovementioned Sun Work-station.The �gures display a substantial di�erene in response timeshowing that Monet XML outruns the ompetitor by up totwo orders of magnitude (rows 1A,2A). The times for SYUinlude a translation of XQL to SQL that is handled outsidethe database server. To allow for this di�erene, we addi-tionally omputed the response times relative to query 1 forboth systems separately, assuming that preproessing ostshave a onstant ontribution. These �gures exhibit atualquery proessing time only (rows 1B,2B). Monet XML showsan inrease of proessing time by less than 12 ms whereasSYU is up to 1150 ms slower than its fastest response time.An analysis of the �gures exhibits the advantages of theMonet model. While SYU store basially all data on asingle heap and have to san these data repeatedly, theMonet transform yields substantially smaller data volumes.In some extreme ases, the query result is diretly avail-able in Monet XML without any proessing and only needsto be traversed and output. Another notieable di�ereneonerns the omplexity of queries: the straight-forward se-mantis of the Monet XML model result in relatively simplequeries; onversely, the ompiled SQL statements that SYUpresent are quite omplex.The omparison with Lore [14℄ exhibited essentially the sametrends on small doument instanes. However, we were notable to bulkload and query larger douments like the ACManthology as Lore requested more than the available 1 GBmain memory. In ontrast, using Monet XML we engi-neered a system funtionally equivalent to the online DBLPserver [13℄ that operated in less than 130 MB.Browsing a database. Our last experiments aim at as-sessing the systems apabilities with respet to browsing.As an example onsider a typial query as it is run on theAnthology server several thousand times a day: Retrieve all

onferene publiations for a given author. Clearly, the sizeof the output may vary drastially and it is of partiularinterest for a browsing session that response times are keptlow independent of the size of the answer.Figure 4 shows both the total response time inluding tex-tual rendering and response time of the repository. As ex-peted, the time for rendering the output inreases signi�-antly yet linear in the result size. However, the responsetime of the repository inreases at signi�antly lower rate.This is due to the reonstrution of the assoiations in formof joins rather than hasing individual hains of pointers.Even for authors with a large number of publiations theoverall response time is well under one tenth of a seond,whih makes interative browsing a�ordable. Also note thatthe lower line in Figure 4 ould also be interpreted as theost of onstruting a view while the upper line additionallyinludes rendering the view to textual XML.The results presented demonstrate the performane poten-tial of our approah deploying fully vertial fragmentation.As the low response times show, reduing the data volumeinvolved in single database operations on the expense of ad-ditional joins pays very well not only in terms of overallperformane but also when saling is an issue.
4. CONCLUSIONSWe presented a data model for eÆient proessing of XMLdouments. Our experienes show that it is worth takingthe plunge and fully deompose XML douments into bi-nary assoiations. The experimental results obtained witha prototype implementation based on Monet underline theviability of our approah: the e�ort to redue data volumequikly pays o� as gains in eÆieny. Overall, our approahombines the elegane of lear semantis with a highly ef-�ient exeution model by means of a simple and e�etivemapping between XML douments and a relational shema.Conerning future work, we will onentrate on exploringpossibilities of parallel proessing and eÆient handling ofmulti-query workloads as found in typial interative Web-based information systems. As we have seen with own ex-periments, there is also the need for a general, standardizedmethodology that allows onlusive performane analysesand failitates omparisons of di�erent approahes.

www.manaraa.com

5. REFERENCES[1℄ S. Abiteboul, D. Quass, J. MHugh, J. Widom, andJ. L. Wiener. The Lorel Query Language forSemistrutured Data. International Journal on DigitalLibraries, 1(1):68{88, 1997.[2℄ S. AG. Tamino { Tehnial Desription. available athttp://www.softwareag.om/tamino/tehnial/desription.htm.[3℄ C. Beeri and Y. Tzaban. SAL: An Algebra forSemistrutured Data and XML. In InternationalWorkshop on the Web and Databases, pages 37{42,Pennsylvania, USA, 1999.[4℄ P. A. Bonz and M. L. Kersten. MIL Primitives forQuerying a Fragmented World. The VLDB Journal,8(2):101{119, 1999.[5℄ A. Bonifati and S. Ceri. Comparative Analysis of FiveXML Query Languages. ACM SIGMOD Reord,1(29), 2000.[6℄ J. Bosak. Sample XML douments.shakespeare.1.01.xml.zip available at ftp://sunsite.un.edu/pub/sun-info/standards/xml/eg/.[7℄ P. Buneman, S. B. Davidson, G. G. Hillebrand, andD. Suiu. A Query Language and OptimizationTehniques for Unstrutured Data. In Pro. of theACM SIGMOD Int'l. Conf. on Management of Data,pages 505{516, Montreal, Canada, 1996.[8℄ A. Deutsh, M. F. Fernandez, and D. Suiu. StoringSemistrutured Data with STORED. In Pro. of theACM SIGMOD Int'l. Conf. on Management of Data,pages 431{442, Philadephia, PA, USA, 1999.[9℄ M. Dyk. The GNU version of The CollaborativeInternational Ditionary of English, presented in theExtensible Markup Language. available athttp://metalab.un.edu/webster/.[10℄ D. Floresu and D. Kossmann. Storing and QueryingXML Data Using an RDBMS. Data EngineeringBulletin, 22(3), 1999.[11℄ R. Goldman and J. Widom. Dataguides: EnablingQuery Formulation and Optimization inSemistrutured Databases. In Pro. of the Int'l. Conf.on Very Large Data Bases, pages 436{445, Athens,Greee, 1997.[12℄ C. Kanne and G. Moerkotte. EÆient Storage of XMLData. In Proeedings of the 16th InternationalConferene on Data Engineering, page 198, 2000.[13℄ M. Ley. DBLP Bibliography. http://www.informatik.uni-trier.de:8000/~ley/db/.[14℄ J. MHugh, S. Abiteboul, R. Goldman, D. Quass, andJ. Widom. Lore: A Database Management System forSemistrutured Data. ACM SIGMOD Reord, 3(26),1997.

[15℄ J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,D. DeWitt, and J. Naughton. Relational Databases forQuerying XML Douments: Limitations andOpportunities. In Pro. of the Int'l. Conf. on VeryLarge Data Bases, pages 302{314, Edinburgh, UK,1999.[16℄ T. Shimura, M. Yoshikawa, and S. Uemura. Storageand Retrieval of XML Douments UsingObjet-Relational Databases. In Database and ExpertSystems Appliations, pages 206{217. Springer, 1999.[17℄ R. van Zwol, P. Apers, and A. Wilshutz.Implementing semi-strutured data with MOA. InWorkshop on Query Proessing for Semistrutureddata and Non-Standard Data Formats (in onjuntionwith ICDT), 1999.[18℄ W3C. Doument Objet Model (DOM). available athttp://www.w3.org/DOM/.[19℄ W3C. Extensible Markup Language (XML) 1.0.available athttp://www.w3.org/TR/1998/REC-xml-19980210.
APPENDIXProof of Proposition 1. De�nition 4 introdues theMonet transformMt(d) = (r;R;A;T) of a doument d. Fora doument d the sets R;A and T are omputed as follows:for elements:R = [(oi;oj ;s)2 ~E[path(oi) e! s℄hoi; oji;for attributes inluding CDATA:A = [(oi;s1;s2)2labelA[path(oi) a! s1℄hoi; s2i;for ranking integers:T = [(oi;i)2rank[path(oi) ! rank ℄hoi; ii�;where E and labelE are ombined into one set~E = f(o1; o2; s)j(o1; o2) 2 E; s = labelE(o2)g;labelA is interpreted as a set � oid � string � string aswell as rank � oid� int, and [expr ℄ means that the value ofexpr is a relation name. To see that the mapping given inde�nition 4 is lossless we give the inverse mapping. Given aninstane of the Monet XML modelMt(d) we an reonstrutthe original rooted tree d = (V;E; r; labelE ; labelA; rank)in the following way (seond-last(p) returns the seond-lastomponent of path p).1. V = �oij(9R 2 R)(9oj 2 oid) : Rhoi; oji	,2. E = �(oi; oj)j(9R 2 R) : Rhoi; oji	,3. r remains,4. labelE = �(oi; s)j(9R 2 R)(9oj 2 oid)(9s 2 string) :Rhoi; oji ^ seond-last(R) = s	,5. labelA = �(oi; s1; s2)j(9A 2 A) : Ahoi; s2i ^ last(A) =s1	,6. rank = �(o; i)j(9T 2 T) : T ho; ii	.

